A comparison of medetomidine and its active enantiomer ...
文章推薦指數: 80 %
Medetomidine, a racemate of the stereoisomers levomedetomidine and dexmedetomidine, is a sedative and analgesic that acts centrally on α2 ... Skiptomaincontent Advertisement SearchallBMCarticles Search DownloadPDF Researcharticle OpenAccess Published:13March2013 Acomparisonofmedetomidineanditsactiveenantiomerdexmedetomidinewhenadministeredwithketamineinmice WesleyMBurnside1,2,PaulAFlecknell1,AngusICameron3&AurélieAThomas1 BMCVeterinaryResearch volume 9,Article number: 48(2013) Citethisarticle 10kAccesses 27Citations Metricsdetails AbstractBackgroundMedetomidine-ketamine(MK)anddexmedetomidine-ketamine(DK)arewidelyusedtoprovidegeneralanaesthesiainlaboratoryanimals,buthavenotbeencompareddirectlyinmanyofthesespecies,includingrodents.Thisstudyaimedtocomparetheonsetanddepthofanaesthesia,andchangesinvitalsigns,afterintraperitoneal(IP)orsubcutaneous(SC)administrationofketamine(75mgkg-1)combinedwithmedetomidine(1mgkg-1)ordexmedetomidine(0.5mgkg-1)usingarandomisedsemi-crossoverdesignwith≥48hoursbetweentreatmentsin10maleand10femalemice.Eachmousewasanaesthetisedtwiceusingthesameadministrationroute(IPorSC):oncewitheachdrug-ketaminecombination.Anaesthetisedmiceweremonitoredonaheatingpadwithoutsupplementaloxygenfor89minutes;atipamezolewasadministeredforreversal.Thetimesthattherightingreflexwaslostpost-injectionandreturnedpost-reversalwereanalysedusinggenerallinearmodels.Tail-pinchandpedalreflexeswereexaminedusingbinomialgeneralizedlinearmodels.Pulserate(PR),respiratoryrate(fr),andarterialhaemoglobinsaturation(SpO2)werecomparedusinggeneralizedadditivemixedmodels.ResultsTherewerenosignificantdifferencesamongtreatmentsforthetimestakenforlossandreturnoftherightingreflex,orresponseofthetail-pinchreflex.ThepedalwithdrawalreflexwasabolishedmorefrequentlywithMKthanDKovertime(P=0.021).TheresponseofPRandSpO2weresimilaramongtreatments,butfrwassignificantlyhigherwithMKthanDK(P≤0.0005).MarkedlylowSpO2concentrationsoccurredwithin5minutespost-injection(83.8±6.7%)inalltreatmentgroupsandweremostsevereafter89minuteslapsed(66.7±7.5%).Nostatisticaldifferencesweredetectedinregardstoadministrationroute(P≤0.94).ConclusionsThisstudyfailedtodemonstrateclinicaladvantagesoftheenantiomerdexmedetomidineovermedetomidinewhencombinedwithketaminetoproducegeneralanaesthesiainmice.Atthedosesadministered,deepsurgicalanaesthesiawasnotconsistentlyproducedwitheithercombination;therefore,anaestheticdepthmustbeassessedbeforeperformingsurgicalprocedures.Supplementaloxygenshouldalwaysbeprovidedduringanaesthesiatopreventhypoxaemia. BackgroundInjectableanaesthesiaisoftenconsideredthemethodofchoiceforexperimentalproceduresinsmallrodents[1].Alpha-2agonistsareroutinelyusedincombinationwithotherdrugstoproduceanaesthesia.Onebenefitofα2agonistsisthattheireffectscanbereversedusingaspecificantagonist,atipamezole[2].Oftheseagents,medetomidineisapopularchoiceinvariousspeciesduetoitshighα2receptorselectivitycomparedtoromifidine,detomidine,andxylazine.Medetomidine,aracemateofthestereoisomerslevomedetomidineanddexmedetomidine,isasedativeandanalgesicthatactscentrallyonα2adrenergicreceptorslargelyconcentratedinthelocuscoeruleusofthebrainstemtodecreasesympathetictone.Peripherally,medetomidineactivatespostsynapticα2adrenergicreceptorsinvascularsmoothmuscletocausevasoconstriction.Itsmainsideeffectsincludebradycardia,hypotension,respiratorydepression,hypothermiaanddiuresis[3–7].Hypotensionisaresultofcentrallymediatedeffectsonsympathetictonethatmaybeapparentaftertheinitialperipheralvasoconstrictiveeffectspass[2,8–10].Thisphenomenonisalsoobservedduringtheadministrationofotherα2agonists[11,12].Dexmedetomidinehasbeenidentifiedastheactiveenantiomerofmedetomidine,yettheeffectsoflevomedetomidinehavebeendebated.Unlikemedetomidineanddexmedetomidine,levomedetomidinealonedoesnotappeartohaveeffectsonthecardiovascularsystemandonlyprovidessedationoranalgesiaathighdosesinratsandmice[3].Itsclearanceisfourtimesmorerapidinthedog[13].Asecondstudyinthedogcomparedahighdoseandlowdoseoflevomedetomidinebyadministrationofaninitialintravenous(IV)bolus(10or80μgkg-1)followedbytwo-hourconstantrateinfusionsoflevomedetomidinealone(25or200μgkg-1h-1)withorwithoutasingledosedexmedetomidine(10μgkg-1);thestudyconcludedthatthecombinedadministrationofahighdoseoflevomedetomidineanddexmedetomidinesignificantlyreducedsedationscoresandincreasedtheincidenceofbradycardia[14].Inhumancellculture,levomedetomidinewasdescribedasan“inverse”agonistbecauseituncoupledactiveα2adrenergicreceptorsbydecreasing[Ca2+]andinhibitingcAMPfunction[15].Ithasbeensuggestedthatthesedativeeffectsofdexmedetomidinealonemaythereforebemorepredictableandthecardiovascularsideeffectsshouldbeminimisedcomparedtotheracemicmixture.However,nosignificantdifferencewasobservedwhenlevomedetomidinewasco-administeredwithdexmedetomidineuntillevomedetomidineexceededeighttimesthenormalracemicpreparation[13].Althoughsomestudieshavesuggestedthatdexmedetomidineissuperiortomedetomidine[13,16],thismaynotbethecase.Ahandfulofstudieshavecomparedthesedativeeffectsofmedetomidineanddexmedetomidineinthemouseandrat[3],dog[13,17,18],cat[16,19,20],andsheep[10].Allofthesestudiesexcepttwoconcludedtherewerenoclinicaladvantagesofdexmedetomidineovermedetomidine[13,16].Althoughtherewerenosignificantdifferences,onestudyconcludedthat“dexmedetomidinetendedtobeslightlymorepotentthantheequivalentdoseofmedetomidine”andmayprovidemorepredictablesedationandanalgesiainthedog[13].Amorerecentcomparisonreportedsignificantlygreatermusclerelaxationinmedetomidine-treatedcats[16].Ketamineincombinationwithmedetomidine(MK)hasbeenwidelyusedasananaestheticforlaboratoryratsandmice[1,7,21–24].KetamineisacentrallyactingNMDA-receptorantagonistthatrapidlyinducesdissociativeanaesthesiawhileprovidinganalgesia.Itssideeffectsincludetachycardia,dysphoria,andmusclerigidity.Whencombinedwithanα2agonist,generalanaesthesiamaybeattained.Themusclerelaxantpropertiesoftheα2agonistoffsettherigidityinducedbyketamineandco-administrationdecreasestheeffectivedoseofeachdrug[5–7].Theintroductionofdexmedetomidineasaveterinaryproducthasbeenaccompaniedbythewithdrawalofmedetomidineinsomecountries(e.g.theUSA).Consequently,useofdexmedetomidineincombinationwithketamine(DK)hasincreased,withdoseratesbasedonassumptionsofpotencyderivedfromtherelativelyfewstudiesinotherspecies.Becausedexmedetomidinewasidentifiedastheactiveenantiomerofmedetomidine,thedoseofdexmedetomidineadministeredisnormallyhalfthatofthemedetomidine;thisisduetotheabsenceoflevomedetomidinethatcomprises50%ofthemedetomidineracemate.Threestudiesinotherspeciesadministeredequalamountsofketaminecombinedwithdosesofmedetomidineordexmedetomidineassumedbytheresearcherstobeequipotent.Astudyofthegolden-headedliontamarinLeontopithecuschrysomelasconcludedthatDKprovidedgreateranaestheticdepthbecausethelengthoftimeittooktamarinstreatedwithDKtowalkafterstandingwassignificantlygreater[25].Similarly,afieldexperimentintheChinesewaterdeerHydropotesinermisalsoobservedamorerapidrecoverywithMK,aswellassignificantlyfasterimmobilisation[26].TherewerenosignificantdifferencesbetweenMKandDKwhenadministeredtotheBennett’swallabyMacropusrufogriseus[27].AlthoughthesestudiessupportinterspeciesvariationinresponsetoMKandDKadministration,currentlythereappeartobenodatadirectlycomparingMKandDKinlaboratoryrodents.Thisstudyaimedtocomparetheonsetanddepthofanaesthesia,andchangesinvitalsigns,afterintraperitoneal(IP)orsubcutaneous(SC)administrationofMKorDKcombinationsinmice.MethodsAnimalsTwentyC57BL/6Nmice,10maleand10femalewereacquiredfromacommercialbreeder(CharlesRiverUKLtd.,Kent,UK).Thesemicewereacclimatedtwoweekspriortothestudyinananimalroommaintainedat22±1°Cand35%humidity,ona12-hourlight-darkcycle(beginningat07:00)with15to20airchangeshour-1;regularserologicalmonitoringensuredthisfacilityisfreefromallrecognisedrespiratorypathogensofrodents.Apositive-pressureindividuallyventilatedcagesystem(Maxiseal,Arrowmight,Hereford,UK)wasusedtohouseamaximumofsixsame-sexmicecage-1.Eachcagecontainedaspenwoodchipbedding(BS&SLtd.,Edinburgh,UK)andnestingmaterial(shreddedpaper,DBMFoodHygieneSuppliesLtd.,Broxburn,UK).Food(CRM(P),SpecialDietsServices,Essex,UK)andtapwaterwereprovidedadlibitum.Atthetimeofthestudy,themicewere6weeksoldandearnotchedforidentification;malesweighed23±1.4gandfemalesweighed19±0.7g.ExperimentaldesignFouranaesthetictreatmentswereevaluatedbyarandomisedsemi-crossoverdesignwith≥48hoursbetweentreatments.Ketamine(75mgkg-1,Ketalar™Injection,PfizerLtd.,Sandwich,UK)wascombinedwithmedetomidine(1mgkg-1,Domitor®,JanssenAnimalHealth,Basingstoke,UK)ordexmedetomidine(0.5mgkg-1,Dexdomitor®,JanssenAnimalHealth).Eachmousewasrandomlyanaesthetisedwithonedrug-ketaminecombination(e.g.medetomidine)administeredbytheIPorSCroute;afteraminimumof48hours,eachmousewasanaesthetisedagainwiththeotherdrug-ketaminecombination(e.g.dexmedetomidine)administeredbythesamerouteasitsfirsttreatment.Datawerecollectedfrom06to17June2011between9:00and13:00dailytoensuretimeofdaydidnotaffectresults.Nomorethanthreemicewereconcurrentlyanesthetisedtoallowenoughtimetomonitoreachindividual;theinjectionofeachmousewasstaggeredby5minutes.Thesameoperatorcollectedallthedataobtainedinthisstudy.ThisstudywascarriedoutinaccordancewithprojectandpersonallicensesgrantedundertheUnitedKingdom’sAnimals(ScientificProcedures)Act(1986)andtheNewcastleUniversityEthicalReviewCommitteespecificallyapprovedthisstudy(PPL60/4126).ProcedureThetimefrominjectiontolossoftherightingreflex(LORR)wasrecordedwhenthemouseappearedimmobileandwasphysicallyrolledintolateralrecumbencybyhandtoverifythattherightingreflexwasabolished.Eachmousewasplacedonadigitalthermoregulatedheatingpad(37°C,507220F,HarvardApparatus,Kent,UK)tobreatheroomair;protectiveeyelubricantwasapplied(Puralube®,Pharmaderm,Melville,NY,USA).Thehairoftherightthighwasclippedandapulseoximeter(MouseOx®,StarrLifeSciencesCorp.,Oakmont,PA,USA)probewasplacedtomonitorpulserate(PR)andarterialhaemoglobinsaturation(SpO2).InadditiontoPRandSpO2,thetail-pinchandpedalwithdrawalreflexes(presenceorabsencedetermined“byhand”),andrespirationrate(fr;determinedbyobservationofchestwallmovement)weremonitoredfor89minutesfrom5minutespost-injectionat7-minuteintervals.ThePRandSpO2wereaveragedfromvaluescollectedevery0.2seconds(MouseOx®)overa30-secondtimeintervalforeachsampletimepoint.Regardlessofanyparameters,theeffectsofmedetomidineordexmedetomidinewereantagonisedat89minutespost-injectionbyatipamezole(5mgkg-1,Antisedan®,JanssenAnimalHealth)administeredbythesamerouteasinduction.Thetimeuntilreturnoftherightingreflex(RORR)wasrecordedasthetimefromatipamezoleadministrationuntilthemouserolledunassistedfromlateraltoventral(sternal)recumbency.Then,micewereplacedinafan-assistedincubator(25°C,MediHeat™,PecoServiesLtd.,Cumbria,UK)untilfullrecovery.StatisticalanalysisGenerallinearmodels(glms)wereusedtoanalysethetimesuntilLORRandRORR.Thefullmodelsincludeddrug,administrationroute,bodyweight,andsexasexplanatoryvariableswithdrugandadministrationrouteincludedasaninteractionterm.TheoptimalmodelwasdeterminedbythestepwiseremovalofvariablestoreachthelowestAkaike’sinformationcriterion(AIC).Areductionof≥5inAICwasconsideredindicativeofasignificantimprovementinmodelfit.Thepresenceoftail-pinchandpedalwithdrawalreflexeswasevaluatedwithgeneralizedlinearmodels(GLMs).Modelsincludedabinomialerrorstructuretoaccountforthebinarynatureoftheresponsevariable.Explanatoryvariablesinthefullmodelincludeddrug,administrationroute,andtimeeachmeasurementwastaken,withdrugandadministrationrouteincludedasaninteractionterm.Stepwiseremovalofvariableswasusedtodeterminetheoptimalmodel.Modelresidualswereexaminedwithanauto-correlationfunction(acf)andshowedthatthepedalwithdrawalreflexmodelsweretemporallyauto-correlated.Pedalwithdrawalreflexwasbetterexplainedwithabinomialgeneralizedadditivemodelwithanauto-regressivecorrelationstructuretoaccountforthetemporaldependencebetweenresiduals.Stepwiseremovalofvariableswasusedtodeterminetheoptimalmodel.ThePR,fr,andSpO2wereexaminedwithgeneralizedadditivemixedeffectsmodels(GAMMs)toallowforpotentialnon-linearrelationshipsamongvariablesaswellasviolationsofindependencewithinthedata.Thefullmodelsforeachresponsevariableincludedtheothertworesponsevariablesasadditionalexplanatoryvariablesforeachmodel(e.g.themodelforPRincludedfr,andSpO2).Drug,administrationroute,time,bodyweight,andsexwerealsoincludedasexplanatoryvariablesforeachofthethreeresponsevariables.Whereanexplanatoryvariableappearedtodemonstratenon-linearrelationshipswiththeresponse(basedonprimaryvisualassessmentofdata),theywereincludedassmoothtermsinthefullmodel(Additionalfile1).Mousewasincludedasanormallydistributedrandomeffecttoaccountforpseudo-replicationinthesemi-crossoverdesign.Optimalmodelswerereachedbythestepwiseremovalofvariables,andreplacementofnon-significantsmoothtermswithlinearones.Finalmodelsweretestedwithacfsforthepresenceoftemporalauto-correlation.OptimalcorrelationstructureswereselectedbyAICtocorrectforthisauto-correlation.Allmodelshadthisbestaccountedforbyauto-regressivemoving-averagecorrelationstructures.Thesewerethenappliedtothefullmodelandstepwiseremovalofexplanatoryvariableswasperformedagain.AllanalyseswereperformedusingRversion2.14.0(RFoundationforStatisticalComputing;http://www.R-project.org).AsignificancelevelofP≤0.05wasusedduringinterpretationoftheseanalysesandallmeansarereportedasthemean±standarddeviationinthetext.ResultsThetimeuntilLORRwasnotsignificantlyaffectedbydrug(glm,F=1.14,P=0.29),administrationroute(glm,F=0.14,P=0.71;Figure 1),orindividualbodyweight(glm,F=3.30,P=0.078).Similarly,thetimeuntilRORRwasnotsignificantlyaffectedbydrug(glm,F=0.26,P=0.61),administrationroute(glm,F=1.86,P=0.18;Figure 1),orindividualbodyweight(glm,F=0.16,P=0.69).Figure1Lossandreturnoftherightingreflex.Meantime(seconds)untillossoftherightingreflex(LORR)andreturnoftherightingreflex(RORR)afteradministrationofmedetomidine-ketamine(MK)ordexmedetomidine-ketamine(DK)bytheintraperitoneal(IP)orsubcutaneous(SC)route.ThetimetoLORRwasnotsignificantlyaffectedbydrug(P=0.29)oradministrationroute(P=0.71).Similarly,thetimeuntilRORRwasnotsignificantlyaffectedbydrug(P=0.61)oradministrationroute(P=0.18).FullsizeimageLossofthetail-pinchreflexoccurredby12minutespost-injectionanddidnotsignificantlydifferbetweenMKandDK(GLM,z=0.92,P=0.36;Figure 2).Neitherdrugconsistentlyachievedlossofthepedalwithdrawalreflexbyeitheradministrationroute,butwasmorefrequentwithMKthanDKovertime(GLM,z=2.3,P=0.021;Figure 2).Figure2Tail-pinchandpedalreflexes.Percentageofindividualswithpresenttail-pinchandpedalwithdrawalreflexesafteradministrationofmedetomidine-ketamine(MK)ordexmedetomidine-ketamine(DK)overtime.Lossofthetail-pinchreflexdidnotsignificantlydifferbetweendrugcombination(P=0.36).Pedalwithdrawalreflexlosswasnotconsistentlyachievedbyeitherdrugcombination,butwasmorefrequentwithMKthanDKovertime(P=0.021).FullsizeimagePulseratewasnotsignificantlydifferentbetweendrug(GAMM,t=0.48,P=0.63;Figure 3)oradministrationroute(GAMM,t=0.47,P=0.64),bodyweight(GAMM,t=0.008,P=0.99)orsex(GAMM,t=1.26,P=0.21).Itwasnegativelycorrelatedwithtimeuntilabout47minutespost-injection,andpositivelycorrelatedthereafter(GAMM,F=16.59,e.d.f.=6.13,P≤0.0005).PulseratewasalsopositivelycorrelatedwithSpO2untilabout77%SpO2,afterwhichthecorrelationbecamenegative(GAMM,F=9.20,e.d.f.=2.74,P≤0.0005).Figure3Vitalsigns.Meanpulserate(PR)andrespiratoryrate(fr)afteradministrationofmedetomidine-ketamine(MK)ordexmedetomidine-ketamine(DK),andarterialhaemoglobinsaturation(SpO2)afterdrugadministrationbytheintraperitoneal(IP)orsubcutaneous(SC)routeovertime.Althoughmeanswerenotusedtodeterminestatisticalsignificance,theyeffectivelydisplaydatatrends.FullsizeimageThefrwassignificantlyhigherwithMKthanDK(GAMM,t=4.047,P≤0.0005;Figure 3).Administrationroutedidnotsignificantlyaffectfr(GAMM,t=0.077,P=0.94).ThecorrelationbetweenfrandSpO2wasnegativeuntilapproximately76%SpO2,atwhichpointthecorrelationbecomespositive(GAMM,F=19.19,e.d.f.=1.86,P≤0.0005).TheSpO2wasnotaffectedbydrug(GAMM,t=0.76,P=0.45)oradministrationroute(GAMM,t=1.75,P=0.081;Figure 3),butpositivelycorrelatedwithbodyweight(GAMM,t=2.85,P=0.0046)andwassignificantlylowerinmalesthanfemales(GAMM,t=2.88,P=0.0041).TheSpO2wasnegativelycorrelatedwithPR(GAMM,t=6.87,P=0.0001)andfr(GAMM,t=4.240,P≤0.0005).Itwaspositivelycorrelatedwithtimeuntilabout47minutespost-injectionandnegativelycorrelatedthereafter(GAMM,F=50.87,e.d.f.=2.86,P≤0.0005).DiscussionMedetomidineanddexmedetomidineareroutinelyadministeredaloneorincombinationwithotherdrugsincludingketamine;however,tothebestofourknowledge,onlyahandfulofpeer-reviewedstudieshaveaimedtocomparethesedativeandanalgesicpropertiesofthesedrugsaloneandevenfewercomparedtheiruseinconjunctionwithketamine.OurstudyfoundnosignificantdifferenceinLORRandRORRtimesbasedondrug,administrationroute,orindividualbodyweight.Lossofthetail-pinchreflexoccurredby12minutespost-injectioninalltreatmentsanddidnotsignificantlydifferbetweenMKandDK.Neitherdrugconsistentlyachievedlossofthepedalwithdrawalreflexbyeitheradministrationroute,butlosswasmorefrequentwithMKthanDKovertime.Pulseratewasnotsignificantlydifferentamongtreatments,butfrwassignificantlyhigherwithMKthanDK;administrationroutedidnotsignificantlyaffectfr.TheSpO2wasnotaffectedbydrugoradministrationroute,butpositivelycorrelatedwithbodyweightandwassignificantlylowerinmalesthanfemales.Onaverage,theSpO2ofthemicewasmarkedlylow(<85%)within5minutespost-injectionanddecreasedseverely(to<70%)by89minutes.Manystudiesthatdirectlycomparedmedetomidineanddexmedetomidineasasedativeorpremedicationfoundnoclinicallysignificantdifferencesinvariousspecies[3,15–19].Inacollectionofexperimentsinlaboratoryrodents,IVsedationwithmedetomidineanditsenantiomerswerefoundtoinducesimilarlevelsofhypotension,bradycardiaandlossofthemydriaticresponse;levomedetomidinehadnocardiovascularorpupillaryeffectwhenadministeredIV[3].Intermsofanalgesia,thesamegroupfoundthatallthreedrugs(0.01to1mgkg-1medetomidine;0.01to0.1mgkg-1dexmedetomidine;0.3to10mgkg-1levomedetomidine)appearedtoinhibittheaceticacid-inducedwrithingresponseinmice.Ultimately,thesestudiesconcludedtherewerenomajordifferencesbetweenmedetomidineanddexmedetomidine[3].Basedontheresultsofthewrithingtest,levomedetomidinemayhaveanalgesicproperties.Thislackofdifferencesreportedinthesepreviousstudieswhenmedetomidineanddexmedetomidinewereadministeredalonesupportsourcurrentfindingsthattherewasnoapparentclinicaldifferencebetweenthesedrugsadministeredincombinationwithketamine.ThedrugdosagesusedinthisstudyrepresentcommonlyreportedMKcombinationsadministeredtomice[1,7,22–24].Thedexmedetomidinedose(0.5mgkg-1)usedwascalculatedashalfthemedetomidinedose(1mgkg-1)becauseitlacksthelevomedetomidinecomponentpresentintheracemicmixture.Wethereforeexpectedthedosesofmedetomidineanddexmedetomidinetobeequipotent.Therecommendeddoseofatipamezoletoreversetheeffectsofthesedrugsis5mgkg-1for1mgkg-1ofmedetomidineor0.5mgkg-1ofdexmedetomidine[22],butitsreportedqualityofreversalisinconsistent[21].WeusedthetimeuntilRORRasameasureofMKandDKreversibilitybyatipamezole;therewerenosignificantdifferences,buttherewasawidevariationinrecoverytimes(293±258seconds).Dependingontheproceduretobeperformed,theidealanaestheticdepthmayvary.Inpractice,depthofanaesthesiaisgenerallydefinedbythelossofspecificreflexesasthedepthofanaesthesiaprogressesfromsedationtosurgicalanaesthesia.Sedationisthefirstlevel;inmice,locomotionceases,respirationslows,andtheheadandtailarerelaxed.Next,lightanaesthesiaoccurswhentherightingreflexislost,butthemousewillrespondtopainfulstimuli.Surgicaldepthofanaesthesiaisachievedwhenthetail-pinchandpedalwithdrawalreflexesarelost.Subcutaneousadministrationof0.3mgkg-1ofdexmedetomidineabolishedtherightingreflexinrats,butparadoxicalexcitabilitywasobservedatthe1mgkg-1dose;neithermedetomidinenordexmedetomidineinducedsustainablelossofthepedalwithdrawalreflexindicatinglightanesthesia[3].Similarly,thedosesofMKandDKadministeredinourstudyinducedLORR(89±51seconds),but,basedontheirfailuretoabolishthepedalwithdrawalreflexthroughoutthetimepost-injection,maynotprovideappropriateanaestheticdepthsuitableforsurgicalprocedures(Figure 2).ThesefindingswereconsistentwithotherreportsofMKadministrationinmice[1,22].StudiesthatcompareddepthofanaesthesiabetweenMKandDKsuggestedthatDKproducedagreateranaestheticdepth[25,26];conversely,ourstudyobservedsignificantlydeeperanaesthesiafromMK(Figure 2).Theseinconsistentfindingscouldbeduetospeciesdifferencesamongmice,golden-headedliontamarinsandChinesewaterdeer.Similarly,differencesamongdifferentstrainsofthesamespecies(e.g.aBALB/corC57BL/6Nbackgroundinmice)havebeenreportedinthefieldofanalgesiaandanaesthesia[28–31].NormalrestingPRinthemouserangesfrom350to600beatsminute-1[32].Bradycardiawasapparentforapproximately26minutespost-injectionwhentheaveragePRreachedaminimum(236±35beatsminute-1);thePRsteadilyincreasedthereafter(Figure 3).ThisdramaticdecreaseinPRwasattributedtoreflexbradycardia,abaroreceptorresponsethatcompensatesforinitialα2-inducedperipheralvasoconstrictionandhypertension.OtherstudiesalsofoundnodifferencesinPRwhenMKandDKwerecompared[26,27].Thesewell-understoodphysiologicalmechanismssupportthatthePRrespondedasexpectedwhenanα2agonistisadministered,whilethesestudiessupportthattherearenoclinicaldifferencesbetweenMKorDKadministeredIVorSCinmice.Thenormalrestingfrinthemouserangesfrom80to200breathsminute-1[32].ThemicetreatedwithDK(144±17breathsminute-1)hadsignificantlylowerfrthanthosetreatedwithMK(156±15breathsminute-1;Figure 3),butthedifferencedoesnotappeartobeclinicallysignificantbasedonthenormalrestingrespiratoryrateandthelackofdifferenceamongtreatmentswithregardstoSpO2.Theincreaseinfrovertimecouldbeacombinedresponsetoarapiddecreaseinarterialpartialpressureofoxygen(PaO2)andpotentialincreaseinarterialpartialpressureofcarbondioxide(PaCO2).AlthoughPaCO2istheprimarytriggerstimulatingtherespiratorydrive,abnormallylowPaO2(≤60mmHg)alonecanhavearoleaswell,referredtoasthe“hypoxicventilatoryresponse”[33,34].DirectmeasurementsofPaO2andPaCO2wouldbenecessarytoconfirmthis.Onobservation,respiratorypatternsofindividualmiceappearedshallowerovertime;thismayaccountforthesteadyincreaseinfr,whiletheSpO2continuedtodecrease.Respiratorydepression,alsoknownashypoventilation,causedbyα2agonistswassuspectedinthisstudybecausedepressionofthecentralnervoussystemfollowingtheactivationofα2agonistreceptorsincludesdepressionofrespiratorycentres.[4,6,35].Measurementsoftidalvolumeandend-tidalcarbondioxideofthemicewouldbenecessarytoconfirmthis.TheeffectofMKandDKonfrinotherstudieswasinconsistent[25–27].Thislackofconsistencycouldbealsoattributedtovariationamongspecies,ormayrequirefurtherexaminationtoverifythephysiologicalprocessthatoccurredinourstudy.AlthoughSpO2wasnotsignificantlydifferentamongtreatmentgroups,therewasaninterestingrelationshipbetweensexandbodyweight.AlthoughasignificantpositivecorrelationexistedbetweenSpO2andbodyweight,malemicehadasignificantlylowerSpO2thanfemales.Anautocorrelationexistsbetweensexandweight:undernormalcircumstancesinmiceofagivenage,maleshaveapredictablygreaterbodyweightthanfemales;however,anunknowncomponentofsexsetstheaverageSpO2ofmalemicelowerthanfemales.Astudyinratssuggestedthatfemalesmayhaveamoreefficientoxygentransportsystemthanmalesrelatedtoahigherpulmonarycompliance[36],whileanotherfoundthatvirginfemaleratsattheonsetofsexualmaturityhaveagreatergas-exchangesurfaceareathanmalerats[37].Inourstudy,agreaterpulmonarycomplianceofprepubescentfemalemicecouldcontributetothesignificantdifferencesobservedbetweensexes.Aspecificstudywouldberequiredtofurtherexplaintherelationshipweobservedinmiceanddetermineifmalesandfemaleshavedifferentrequirementsforoxygenunderanaesthesia.Hypoxaemiaisasignificantcauseofmortalityinanesthetisedmice,yetsupplementaloxygenisnotcommonlyused[7].Inordertomimiccommonlaboratorypractice,supplementaloxygenwasnotsuppliedinthisstudy.TheSpO2wasmarkedlylowwithin5minutespost-injection(83.8±6.7%)anddecreasedseverelyto66.7±7.5%by89minutes(Figure 3).Althoughhypoxaemiawasanticipatedbasedonpreviousstudies,SpO2levelswerelowerthanexpected[25–27].ThislargedecreaseinSpO2couldbeduethemonitoringmethodemployedinourstudy:pulseoximetry.Pulseoximetrywasusedinthisstudybecauseitprovidesasimple,non-invasivemeansofmonitoringrespiratoryfunction;however,pulseoximetryhaslimitations.Readingsbecomelessreliableatloweroxygensaturationlevels(<70to75%)[38,39].Thisisnotusuallyasignificantproblembecauselevelslessthan80%requirecorrectiveactionwhensupplementaloxygenisnotsupplied;thisthresholdincreasesto90%forindividualsreceivingsupplementaloxygen.Additionally,peripheralvasoconstrictionandhypothermia,sideeffectsofmedetomidine,couldhavepreventedaccuratereadingsduetoalackofperfusioninthelocationoftheprobe[4–7].Althoughwedidnotmonitorcoretemperature,theheatingpadusedthroughouttheexperimentshouldhavehelpedtopreventhypothermia.Inapreviousstudyinrats,thepulseoximeterreadingswerecomparabletoarterialbloodgasvalues[40].Othersourcesoferrorcouldincludemechanicalartifactsfromimproperprobeplacementandelectromagneticinterference,butarelesslikely[39].TherewerenosignificantdifferencesbetweenIPandSCadministrationasthetimesofonsetandanaestheticdepthsweresimilar.ThiswasunexpectedbecauseIPadministrationwasanticipatedtoresultinamorerapidonset,greaterfirstpassextractionoftheanaestheticagentsbytheliver,andpossibleconsequentreductioninefficacybasedonpreviouswork[41].Despitethispotentialuncertaintyastodoseequivalence,SCdosingmaybeconsideredpreferabletopreventadditionalstresstotheanimal,aswellaspotentialdamagetointernalorgansthatmayoccurbyIPdelivery;itmayalsobemoreamorereliableroutebecauseIPinjectionshavebeenassociatedwithahighpartialfailurerate[42].Therigorousstatisticalmodelselectionemployedensuredthatadynamicandflexibleco-variancestructurewasappropriatelyappliedtotheerrorstructuresoftime-seriesmodels.Mousewasincludedasarandomeffecttoaccountforthelackofindependencethatresultedfromsubjectingeachmousetobothdrugcombinations(thesemi-crossoverdesign).Appropriatemodelerrorstructuresaccountedfortherepeatedmeasurestakensequentiallyfromeachmouse.Thesemi-crossoverdesignallowedustoreducethenumberofanimalsrequiredforthestudy,reusemiceformultipletreatments,andaccountforphysiologicaldifferencesamongindividuals.Becauseofthelackofindependencebetweentimepointswithinthesedata(asforanyanalysisofatime-series),displayingmeanvaluesforeachtime-pointcanonlybeusedtodemonstrateoveralldatatrends(Figure 3).Moredifficulttointerpretgraphicallyandbeyondthescopeofthisstudy,theappropriateplotsdemonstratingthestatisticalnatureoftheserelationshipsrequiredindividualplotsforeachmouse(Additionalfile2).Thestatisticalanalysesofrelatedpreviousworkhavereliedheavilyonrepeatedmeasuresanalysisofvariance(ANOVA)[13,14,19,25–27,43].Whilethesetestsaccountforadegreeofdependencebetweendatapoints,themixedeffectsmodelingapproachweutilisedismoreflexibleandrobustthanmorecommonanalyses.WhereasarepeatedmeasuresANOVAcanbeusedtodetectlineardependenciesbetweenresponseandexplanatoryvariables,themodelsusedherecanbeusedtoexplainnon-linearautocorrelation(e.g.adecayindependenceastimebetweendatapointsincreases)[44,45].Moderndataanalysistechniquescouldbeusedtorefineexperimentalprotocolandmorepowerfulmethodologiescouldbeencouragedinlaboratoryanimalmedicinetoreducethenumbersofindividualsusedinstudies.OurstudyfailedtodemonstrateclinicaldifferencesintheuseofMKorDKadministeredeitherIPorSCinthemouse.Wealsodemonstratedtheneedforappropriateoxygensupplementation,evenduringshortorminorprocedures.FurtherresearchshouldexaminetheeffectsofMKandDKindifferentmousestrains.Bloodpressuremonitoringmayhavedemonstratedtherelationshipbetweentheinitialhypertensionexpectedfromtheperipheralvasoconstrictioninducedbyα2agonistsandtheinitialbradycardiaobserved.Then,thecentrallymediateddecreaseinbloodpressurereportedtofollowmaycorrelatewiththesteadyincreaseinPRwhichoccurredafter26minutespost-injection[2,8–12].Ameasureofrectaltemperaturewouldensuretheheatingpadwasappropriatelymaintainingbodytemperature.ConclusionsOurstudyfailedtodemonstrateclinicaladvantagesoftheactiveenantiomerdexmedetomidineovertheracemicmixturemedetomidinewhencombinedwithketamineforgeneralanaesthesiainmice.Theseresultsreassurecolleaguesworkinginlocationswheremedetomidineisnolongeravailablethatdexmedetomidinecanbeusedwitha50%reductionindoserate.ThedosesofMKandDKadministeredinthisstudydidnotconsistentlyproducedeepsurgicalanaesthesia,soanaestheticdepthmustbeassessedbeforeperformingsurgicalprocedures.TherewasnoadvantageoftheIPadministrationroutecomparedtotheSCinjection,buttheSCroutemaybesuggestedbasedonpreviousreportsofreducedinjury,stressandpartialfailurerates[42].BecausetheSpO2levelsofallanaesthetisedmiceweremarkedlyorseverelylowthroughoutthisstudy,supplementaloxygenshouldalwaysbeprovidedregardlessofthelengthoftheprocedure. Abbreviationsacfs: Auto-correlationfunctions ANOVA: Analysisofvariance AIC: Akaike’sinformationcriterion DK: Dexmedetomidine-ketamine fr: Respiratoryrate GAMMs: Generalizedadditivemixedeffectsmodels glms: Generallinearmodels GLMs: Generalizedlinearmodels IP: Intraperitoneal IV: Intravenous LORR: Lossoftherightingreflect MK: Medetomidine-Ketamine PaCO2: Arterialpartialpressureofcarbondioxide PaO2: Arterialpartialpressureofoxygen PR: Pulserate RORR: Returnoftherightingreflex SC: Subcutaneous SpO2: Arterialhaemoglobinsaturation References1.ArrasM,AutenriedP,RettichA,SpaeniD,RülickeT:Optimizationofintraperitonealinjectionanesthesiainmice:drugs,dosages,adverseeffectsandaesthesiadepth.CompMed.2001,51:443-456.PubMed CAS GoogleScholar 2.PypendopB,SerteynD,VerstegenJ:Hemodynamiceffectsofmedetomidine-midazolam-butorphanolcombinationsandreversibilitybyatipamezoleindogs.AmJVetRes.1996,57:724-730.PubMed CAS GoogleScholar 3.SavolaJM,VirtanenR:Centralα2-adrenoceptorsarehighlystereoselectivefordexmedetomidine,thedextroenantiomerofmedetomidine.JPharm.1991,195:193-199.CAS GoogleScholar 4.SinclairMD:Areviewofthephysiologicaleffectsofα2-agonistsrelatedtotheclinicaluseofmedetomidineinsmallanimalpractice.CanVetJ.2003,44:885-897.PubMed CAS PubMedCentral GoogleScholar 5.MeyerRE,FishRE:PharmacologyofInjectableAnesthetics,Sedatives,andTranquilizers.InAnesthesiaandAnalgesiainLaboratoryAnimals.2ndedition.EditedbyFishRE,BrownMJ,DannemanPJ,KarasAZ.London:AcademicPress;2008:27–82. GoogleScholar 6.HeavnerJE,CooperDM:PharmacologyofAnalgesics.InAnesthesiaandAnalgesiainLaboratoryAnimals.2ndedition.EditedbyFishRE,BrownMJ,DannemanPJ,KarasAZ.London:AcademicPress;2008:97–123.Chapter GoogleScholar 7.FlecknellPA:LaboratoryAnimalAnaesthesia.3rdedition.London:AcademicPress;2009. GoogleScholar 8.KobingerW:Centralalpha-adrenergicsystemsastargetsforhypotensivedrugs.RevPhysiolBiochemPharmacol.1978,81:39-100.10.1007/BFb0034091.PubMed CAS GoogleScholar 9.MazeM,TranquilliW:Alpha-2adrenoceptoragonists:definingtheroleinclinicalanesthesia.Anesthesiology.1991,74:581-601.10.1097/00000542-199103000-00029.PubMed CAS Article GoogleScholar 10.BiccardBM,GogaS,deBeursJ:Dexmedetomidineandcardiacprotectionfornon-cardiacsurgery:ameta-analysisofrandomisedcontrolledtrials.Anaesthesia.2008,63:4-14.PubMed CAS Article GoogleScholar 11.ClarkeKW,EnglandGCW,GoossensL:Sedativeandcardiovasculareffectsofromifidine,aloneandincombinationwithbutorphanol,inthehorse.VetAnaesth.1991,18:25-29.10.1111/j.1467-2995.1991.tb00008.x.CAS Article GoogleScholar 12.YamashitaK,TsubakishitaS,FutaokaS,UedaI,HamaguchiH,SenoT,KatohS,IzumisawaY,KotaniT,MuirWW:Cardiovasculareffectsofmedetomidine,detomidine,andxylazineinhorses.JVetMedSci.2000,62:1025-1032.10.1292/jvms.62.1025.PubMed CAS Article GoogleScholar 13.KuuselaE,RaekallioM,AnttilaM,FalckI,MölsäS,VainioO:Clinicaleffectsandpharmacokineticsofmedetomidineanditsenantiomersindogs.JVetPharmacolTherap.2000,23:15-20.10.1046/j.1365-2885.2000.00245.x.CAS Article GoogleScholar 14.KuuselaE,VainioO,KaistinenA,KobylinS,RaekallioM:Sedative,analgesic,andcardiovasculareffectsoflevomedetomidinealoneandincombinationwithdexmedetomidineindogs.AmJVetRes.2001,62:616-621.10.2460/ajvr.2001.62.616.PubMed CAS Article GoogleScholar 15.JanssonCC,KukkonenJP,NäsmanJ,HuifangG,WursterS,VirtanenR,SavolaJM,CockcroftV,AkermanKE:Proteanagonismatα2A-adrenoceptors.MolPharmacol.1998,53:963-968.PubMed CAS GoogleScholar 16.ScrollavezzaP,TambellaAM,VulloC,PiccionelloAP:Evaluationofthemuscularrelaxanteffectofdexmedetomidineormedetomidineincats.VetResCommun.2009,33:S213-S215.10.1007/s11259-009-9271-y.Article GoogleScholar 17.Gómez-VillamandosRJ,PalaciosC,BenítezA,GranadosMM,DomínguezJM,LópezI,RuizI,AguileraE,SantistebanJM:Dexmedetomidineormedetomidinepremedicationbeforepropofol–desfluraneanaesthesiaindogs.JVetPharmacolTherap.2006,29:157-163.10.1111/j.1365-2885.2006.00732.x.Article GoogleScholar 18.GranholmM,McKusiakBC,WesterholmFC,AspegrénJC:Evaluationoftheclinicalefficacyandsafetyofintramuscularandintravenousdosesofdexmedetomidineandmedetomidineindogsandtheirreversalwithatipamezole.VetRec.2007,160:891-897.10.1136/vr.160.26.891.PubMed CAS Article GoogleScholar 19.AnsahOB,RaekallioM,VainioO:Comparisonofthreedosesofdexmedetomidinewithmedetomidineincatsfollowingintramuscularadministration.JVetPharmacolTherap.1998,21:380-387.10.1046/j.1365-2885.1998.00155.x.CAS Article GoogleScholar 20.GranholmM,McKusiakBC,WesterholmFC,AspegrénJC:Evaluationoftheclinicalefficacyandsafetyofdexmedetomidineormedetomidineincatsandtheirreversalwithatipamezole.VetAnaesthAnalg.2006,38:214-223.Article GoogleScholar 21.JangHS,CholHS,LeeSH,JangKH,LeeMG:Evaluationoftheanaestheticeffectsofmedetomidineandketamineinratsandtheirreversalwithatipamezole.VetAnaesthAnalg.2009,36:319-327.10.1111/j.1467-2995.2009.00463.x.PubMed CAS Article GoogleScholar 22.CruzJI,LosteJM,BurzacoOH:Observationsontheuseofmedetomidine/ketamineanditsreversalwithatipamezoleforchemicalrestraintinthemouse.LabAnim.1998,32:18-22.10.1258/002367798780559383.PubMed CAS Article GoogleScholar 23.TaylorR,HayesKE,TothLA:Evaluationofananestheticregimenforretroorbitalbloodcollectionfrommice.ContempTopLabAnimSci.2000,39:14-17.PubMed CAS GoogleScholar 24.RichardsonCA,FlecknellPA:Anaesthesiaandpost-operativeanalgesiafollowingexperimentalsurgeryinlaboratoryrodents:arewemakingprogress?.AlternLabAnim.2005,33:119-127.PubMed CAS GoogleScholar 25.SelmiAL,MendesGM,FigueiredoJP,Barbudo-SelmiGR,BrunoBT:Comparisonofmedetomidine-ketamineanddexmedetomidine-ketamineanesthesiaingolden-headedliontamarins.CanVetJ.2004,45:481-485.PubMed CAS PubMedCentral GoogleScholar 26.BoutsT,TaylorP,BerryK,RouthA,GasthuysF:Evaluationofmedetomidine-ketamineanddexmedetomidine-ketamineinChinesewaterdeer(Hydropotesinermis).VetAnaesthAnalg.2011,38:106-112.10.1111/j.1467-2995.2010.00591.x.PubMed CAS Article GoogleScholar 27.BoutsT,HarrisonN,BerryK,TaylorP,RouthA,GasthuysF:ComparisonofthreeanaestheticprotocolsinBennett’swallabies(Macropusrufogriseus).VetAnaesthAnalg.2010,37:207-214.10.1111/j.1467-2995.2009.00523.x.PubMed CAS Article GoogleScholar 28.MoskowitzAS,TermanGW,CarterKR,MorganMJ,LiebeskindJC:Analgesic,locomotorandlethaleffectsofmorphineinthemouse:straincomparisions.BrainRes.1985,361:46-51.10.1016/0006-8993(85)91273-9.PubMed CAS Article GoogleScholar 29.KestB,HopkinsM,PalmeseCA,AdlerM,MogilJS:Geneticvariationinmorphineanalgesictolerance:asurveyof11inbredmousestrains.PharmacolBiochemBehav.2002,73:821-828.10.1016/S0091-3057(02)00908-5.PubMed CAS Article GoogleScholar 30.SonnerJM,GongD,EgerEI:Naturallyoccurringvariabilityinanestheticpotencyamonginbredmousestrains.AnesthAnalg.2009,91:720-726.Article GoogleScholar 31.MogilJS,SmithSB,O’ReillyMK,PlourdeG:Influenceofnociceptionandstress-inducedantinociceptionongeneticvariationinisofluraneanestheticpotencyamongmousestrains.Anesthesiology.2005,103:751-758.10.1097/00000542-200510000-00013.PubMed CAS Article GoogleScholar 32.GrimmKA,TranquilliWJ,LamontLA:EssentialsofSmallAnimalAnesthesiaandAnalgesia.2ndedition.WestSussex:JohnWiley&Sons,Ltd.;2011. GoogleScholar 33.WeilJV,Byrne-QuinnEmSodalIE,FriesenWO,UnderhillB,FilleyGF,GroverRF:Hypoxicventilatordriveinnormalman.JClinInvest.1970,49:1061-1072.10.1172/JCI106322.PubMed CAS PubMedCentral Article GoogleScholar 34.MillerRD,ErikssonLI,FleisherLA,Wiener-KronishJP,YoungWL:Miller’sAnesthesia.7thedition.Philadelphia:ChurchhillLivingstone;2010. GoogleScholar 35.HsuWS:Xylazine-induceddepressionanditsantagonismbyα2-adrenergicblockingagents.JPharmacolExpTher.1981,218:188-192.PubMed CAS GoogleScholar 36.TorbatiD,RamirezJ,HonE,CamachoMT,SussmaneJB,RaszynskiA,WolfsdorfJ:Experimentalcriticalcareinrates:genderdifferencesinanesthesia,ventilation,andgasexchange.CritCareMed.1999,27:1878-1884.10.1097/00003246-199909000-00028.PubMed CAS Article GoogleScholar 37.MassaroGD,MortolaJP,MassaroD:Sexualdimorphisminthearchitectureofthelung'sgas-exchangeregion.ProcNatlAcadSciUSA.1995,92:1105-1107.10.1073/pnas.92.4.1105.PubMed CAS PubMedCentral Article GoogleScholar 38.GrosenbaughDA,MuirWW:Accuracyofnoninvasiveoxyhemoglobinsaturation,end-tidalcarbondioxideconcentration,andbloodpressuremonitoringduringexperimentallyinducedhypoxemia,hypotension,orhypertensioninanesthetizeddogs.AmJVetRes.1998,59:205-212.PubMed CAS GoogleScholar 39.MoyleJTB:PulseOximetry.2ndedition.London:BMJBooks;2002. GoogleScholar 40.HedenqvistP,RoughanJV,FlecknellPA:Sufentanilandmedetomidineanaesthesiaintheratanditsreversalwithatipamezoleandbutorphanol.LabAnim.1999,34:244-251.Article GoogleScholar 41.HedenqvistP,HellebrekersLJ:LaboratoryAnimalAnalgesia,Anesthesia,andEuthanasia.InHandbookofLaboratoryAnimalScience.Volume1:EssentialPrinciplesandPractices.2ndedition.EditedbyHauJ,VanHoosierGL.London:CRCPressLLC;2003:413–456. GoogleScholar 42.MinerNA,KoehlerJ,GreenwayL:Intraperitonealinjectionofmice.ApplMicrobiol.1969,17:250-251.PubMed CAS PubMedCentral GoogleScholar 43.KästnerSB,VonRechenbergB,KellerK,Bettschart-WolfensbergerR:Comparisonofmedetomidineanddexmedetomidineaspremedicationinisofluraneanaesthesiafororthopaedicsurgeryindomesticsheep.JVetMed.2001,48:231-241.10.1046/j.1439-0442.2001.00354.x.Article GoogleScholar 44.PinheiroJC,BatesDM:MixedeffectsmodelsinSandS-PLUS.NewYork:SpringerVerlag;2000.Book GoogleScholar 45.ZuurAF,IenoEN,WalkerNJ,SavelievAA,SmithGM:MixedEffectsmodelsandextensionsinecologywithR.NewYork:SpringerScience+BusinessMedia;2009.Book GoogleScholar DownloadreferencesAcknowledgementsAnimalswerekindlysuppliedbyCharlesRiver.WethankDr.MatthewLeachforhisinputintothedesignofthestudy.AuthorinformationAffiliationsComparativeBiologyCentre,NewcastleUniversity,FramlingtonPlace,NewcastleuponTyne,NE24HH,UnitedKingdomWesleyMBurnside, PaulAFlecknell & AurélieAThomasSchoolofVeterinaryMedicine,CollegeofMedical,VeterinaryandLifeSciences,UniversityofGlasgow,BearsdenRoad,Glasgow,G611QH,UnitedKingdomWesleyMBurnsideBoydOrrCentreforpopulationandecosystemhealth,InstituteofBiodiversity,AnimalHealthandComparativeMedicine,CollegeofMedical,VeterinaryandLifeSciences,UniversityofGlasgow,Glasgow,G128QQ,UnitedKingdomAngusICameronAuthorsWesleyMBurnsideViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarPaulAFlecknellViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarAngusICameronViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarAurélieAThomasViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarCorrespondingauthorCorrespondenceto AurélieAThomas.AdditionalinformationCompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.Authors’contributionsAATandPAFconceivedanddesignedthisstudy.WMBcollected,analysed,andarrangedthedataforstatisticalanalysis.AICperformedthestatisticalanalyses.Allauthorscontributedtodatainterpretation,aswellasthedrafting,revising,andfinalapprovalofthismanuscript.Electronicsupplementarymaterial Smoothingcurvesfornon-linearrelationships.Additionalfile1:Estimatedsmoothingcurvesofthenon-linearparametersoftheeffectoftimeonpulserate(PR)andarterialhaemoglobinsaturation(SpO2),aswellastheeffectofSpO2onPRandrespiratoryrate(fr)determinedbyaseriesofgeneralizedadditivemixedeffectsmodels(GAMMs).Dashedlinesrepresent95%CI.Significantnon-linearrelationshipsoccurredforPR(P≤0.0001)andSpO2(P<0.0001)asasmoothingfunctionoftime,aswellasPR(P≤0.0001)andfr(P<0.0001)asasmoothingfunctionofSpO2.(PDF305KB)Plotsofvitalsignsforindividualmice.Additionalfile2:Individualplotsofpulserate(PR),respiratoryrate(fr)andarterialhaemoglobinsaturation(SpO2)foreachmousebyafteradministrationofmedetomidine-ketamine(MK)ordexmedetomidine-ketamine(DK)bytheintraperitoneal(IP)orsubcutaneous(SC)routeovertimeusedforstatisticalanalysis.Theindividualmouseidentificationnumberislocatedatthebottomleftcornerofeachplot.(PDF983KB)Authors’originalsubmittedfilesforimagesBelowarethelinkstotheauthors’originalsubmittedfilesforimages.Authors’originalfileforfigure1Authors’originalfileforfigure2Authors’originalfileforfigure3Authors’originalfileforfigure4Rightsandpermissions OpenAccess ThisarticleispublishedunderlicensetoBioMedCentralLtd.ThisisanOpenAccessarticleisdistributedunderthetermsoftheCreativeCommonsAttributionLicense( https://creativecommons.org/licenses/by/2.0 ),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. ReprintsandPermissionsAboutthisarticleCitethisarticleBurnside,W.M.,Flecknell,P.A.,Cameron,A.I.etal.Acomparisonofmedetomidineanditsactiveenantiomerdexmedetomidinewhenadministeredwithketamineinmice. BMCVetRes9,48(2013).https://doi.org/10.1186/1746-6148-9-48DownloadcitationReceived:24September2012Accepted:06March2013Published:13March2013DOI:https://doi.org/10.1186/1746-6148-9-48SharethisarticleAnyoneyousharethefollowinglinkwithwillbeabletoreadthiscontent:GetshareablelinkSorry,ashareablelinkisnotcurrentlyavailableforthisarticle.Copytoclipboard ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative KeywordsAlpha-2agonistsDexmedetomidineDrugadministrationrouteGeneralanaesthesiaHypoxaemiaKetamineMouseMedetomidineSubcutaneousinjectionSupplementaloxygen DownloadPDF AssociatedContent Section Pharmacologyandtoxicology Advertisement BMCVeterinaryResearch ISSN:1746-6148 Contactus Submissionenquiries:[email protected] Generalenquiries:[email protected]
延伸文章資訊
- 1Comparison of medetomidine and ... - AVMA Journals
Combined mean end-tidal isoflurane concentration for all dose levels was higher in dogs that rece...
- 2Medetomidine and dexmedetomidine: a review of ... - PubMed
Medetomidine and dexmedetomidine: a review of cardiovascular effects and antinociceptive properti...
- 3評估單獨使用Xylazine或Dexmedetomidine於白鼻心之作用與 ...
Bartram DH, Diamond MJ, Tute AS, Trafford AW, Jones RS. Use of medetomidine and butorphanol for s...
- 4Effects of Medetomidine, Dexmedetomidine and ... - Publons
Effects of Medetomidine, Dexmedetomidine and their combination with Acepromazine on the intraocul...
- 5Effect of Medetomidine, Dexmedetomidine, and Their ... - MDPI
Medetomidine, an alpha-2 agonist routinely used to provide sedation and pain relief in dogs, is a...